Exercise 13

Convert each of the following Volterra integral equation in 9-16 to an equivalent IVP:

$$
u(x)=1-\cos x+2 \int_{0}^{x}(x-t)^{2} u(t) d t
$$

Solution

Differentiate both sides with respect to x.

$$
u^{\prime}(x)=\sin x+2 \frac{d}{d x} \int_{0}^{x}(x-t)^{2} u(t) d t
$$

Use the Leibnitz rule to differentiate the integral.

$$
\begin{aligned}
& =\sin x+2\left[\int_{0}^{x} \frac{\partial}{\partial x}(x-t)^{2} u(t) d t+(0)^{2} u(x) \cdot 1-(x)^{2} u(0) \cdot 0\right] \\
& =\sin x+2\left[\int_{0}^{x} 2(x-t) u(t) d t\right] \\
& =\sin x+4 \int_{0}^{x}(x-t) u(t) d t
\end{aligned}
$$

Differentiate both sides with respect to x again.

$$
\begin{aligned}
u^{\prime \prime}(x) & =\cos x+4 \frac{d}{d x} \int_{0}^{x}(x-t) u(t) d t \\
& =\cos x+4\left[\int_{0}^{x} \frac{\partial}{\partial x}(x-t) u(t) d t+(0) u(x) \cdot 1-(x) u(0) \cdot 0\right] \\
& =\cos x+4 \int_{0}^{x} u(t) d t
\end{aligned}
$$

Differentiate both sides with respect to x again.

$$
\begin{gathered}
u^{\prime \prime \prime}(x)=-\sin x+4 \frac{d}{d x} \int_{0}^{x} u(t) d t \\
=-\sin x+4 u(x) \\
u^{\prime \prime \prime}-4 u=-\sin x
\end{gathered}
$$

The initial conditions to this ODE are found by plugging in $x=0$ into the original integral equation,

$$
u(0)=1-\cos 0+2 \int_{0}^{0}(0-t)^{2} u(t) d t=0
$$

and the formula for u^{\prime},

$$
u^{\prime}(0)=\sin 0+4 \int_{0}^{0}(0-t) u(t) d t=0
$$

and the formula for $u^{\prime \prime}$,

$$
u^{\prime \prime}(0)=\cos 0+4 \int_{0}^{0} u(t) d t=1
$$

Therefore, the equivalent IVP is

$$
u^{\prime \prime \prime}-4 u=-\sin x, u(0)=0, u^{\prime}(0)=0, u^{\prime \prime}(0)=1 .
$$

